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[1] Earthquake occurrence probabilities that account for stress transfer and
time-dependent failure depend on the product of the effective normal stress and a
lab-derived dimensionless coefficient a. This coefficient describes the instantaneous
dependence of fault strength on deformation rate, and determines the duration of
precursory slip. Although an instantaneous rate dependence is observed for fracture,
friction, crack growth, and low temperature plasticity in laboratory experiments, the
physical origin of this effect during earthquake faulting is obscure. We examine this rate
dependence in laboratory experiments on different rock types using a normalization
scheme modified from one proposed by Tullis and Weeks [1987]. We compare the
instantaneous rate dependence in rock friction with rate dependence measurements from
higher temperature dislocation glide experiments. The same normalization scheme is used
to compare rate dependence in friction to rock fracture and to low-temperature crack
growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate
dependence is consistent with dislocation glide. In intact rock failure tests, for each rock
type considered, the instantaneous rate dependence is the same size as for friction,
suggesting a common physical origin. During subcritical crack growth in strong
quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate
dependence measured during failure or creep tests at high stress has long been thought to
be due to crack growth; however, direct comparison between crack growth and
friction tests shows poor agreement. The crack growth rate dependence appears to be
higher than the rate dependence of friction and fracture by a factor of two to three for all
rock types considered.
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1. Introduction

[2] Stress changes alter earthquake recurrence probabili-
ties [e.g., Stein et al., 1997] depending on the type of stress
change, the characteristics of the unperturbed probability
distribution, and the dependence of fault failure time on
stress. To illustrate, consider an idealized case: the effect of
a static stress change on the probability density of earth-
quake recurrence of an event with a known, log normal
distribution of recurrence intervals [e.g., Stein et al., 1997]
(Figure 1, black)
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where tr is recurrence interval, !ltr is the average log
recurrence interval and s is the standard deviation of log

recurrence interval (Figure 1, black). The tectonic stressing
rate _t is constant. We consider the importance of the
assumed fault strength by using two different laboratory-
based failure criteria. Given a stress threshold failure
relation and an increase in shear stress Dt applied at time
tr = t0, the times for potential recurrences with tr > t0 + Dt/
_t! are shortened byDt/ _t. Potential recurrences in the range
t0 < tr < t0 + Dt/ _t collapse onto tr = t0, and we have a
density
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Thus at the moment of the stress change, the instantaneous
expected rate of earthquake recurrence is transiently high
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(Figure 1, grey), depending on the size of the stress change
(Dt), the stressing rate ( _t), and on when the stress change
occurs (t0).
[3] Using a threshold failure relationship, all of the time

dependence of earthquake probability arises from the nature
of the stress change and the assumed form of the probability
density distribution while the fault failure criteria, having no
time dependence, does not contribute. In contrast to thresh-
old failure, laboratory observations of intact rock failure and
stick-slip sliding on preexisting faults invariably show
second order dependencies on time of one sort or another,
principally static fatigue where time of failure depends on
the size of the stress change and initial temporal proximity
to failure [e.g., Scholz, 1972; Kranz, 1980]. Other time-
dependent phenomenon include delayed failure and precur-
sory slip, most obvious in stick-slip sliding tests [e.g.,
Dieterich, 1992]. These are believed to arise from the same
kind of underlying physical mechanism as is responsible for
static fatigue, resulting in a small positive, nonlinear depen-
dence of fault strength on sliding rate.
[4] When the failure criteria is time-dependent, the recur-

rence probabilities are quite different from the threshold
model prediction. For laboratory observations, a stress
change alters the failure time by some amount, which
typically depends on how close the fault was to failure
prior to the stress change [e.g., Scholz, 1972; Dieterich,
1994]. This fundamental time dependence of rock fracture
and stick-slip failure stress can be described empirically
using a relation proposed by Dieterich [1992; 1994]:
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where d is slip, se is the effective normal stress, t is shear
stress in the direction of slip, and V is slip rate. a and b are
experimentally determined and are second order relative to
the nominal friction m* and V* is the slip velocity when m* = 0
and d = 0. dc is a characteristic slip distance. This is a
failure relation used in probability calculations by Stein et
al. [1997] and subsequent others and in seismicity rate

estimates by Dieterich [1994] and Gomberg et al. [2000]. In
our recurrence example this relation produces a recurrence
probability density due to static stress change of the form
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(Figures 2a–2b). A derivation of equation (4) is included in
the Appendix. The result is a transient increase of different
amplitude than obtained for the threshold example (Figure 1),
and it is spread out over a longer time interval. During the
years immediately after the stress transfer event, the
recurrence probability density is dramatically enhanced over
the unperturbed probability density and over the threshold
model (Figure 1). How much the probability density is

Figure 1. Log normal distribution of recurrence intervals
for !ltr = 4.6 ln(yr), s = 0.31 ln(yr) (black). Also shown is
the probability density for recurrence of a threshold failure
model, subject to a stress increase Dt = 0.3 MPa at t =
70 yr (grey).

Figure 2. (a) Log normal distribution of recurrence
intervals with !ltr = 4.6 ln(yr), s = 0.31 ln(yr) (black). Also
shown is the probability density for recurrence of a simple
failure model [Dieterich, 1994] subject to a stress increase
Dt = 0.3 MPa, at t = 70 yr, with _t = 10MPa/100 yr, a =
0.005, b = 0.01, se = 100 MPa, dc = 5 mm (grey). (b) Detail
of the probabilities (shown expanded), as predicted by the
threshold (grey) and simple failure (dashed) models shown
in Figures 1 and 2a.

B07310 BEELER ET AL.: INSTANTANEOUS FRICTION RATE DEPENDENCE

2 of 13

B07310



increased and the duration of the increase are controlled by
the product ase [see Dieterich, 1994].
[5] Triggering of time-dependent earthquake rates as

observed for aftershocks [Mogi, 1962; Scholz, 1968b;
Knopoff, 1972; Das and Scholz, 1981; Yamashita and
Knopoff, 1987; Hirata, 1987; Reushle, 1990; Marcellini,
1995, 1997; Dieterich, 1994; and Gomberg et al., 2000
among others] and foreshocks [Das and Scholz, 1981;
Dieterich, 1994] are predicted by the simple constitutive
description [equation (3)]. Using an approach similar to
equation (4) above, time-dependent earthquake probability
can be estimated routinely for somewhat more sophisticated
and realistic scenarios than our recurrence examples
(Figures 1 and 2) [Stein et al., 1997, Toda et al., 1998;
Parsons et al., 2000; Toda and Stein, 2002; Parsons, 2002;
Gomberg et al., 2005]. However, there are pitfalls in
using this lab observed behavior to calculate probability
and triggering. First, rock friction results at temperatures
less than 400!C suggest that a = 0.005 [e.g., Beeler and
Lockner, 2003] to 0.039 [e.g., Blanpied et al., 1998]. As the
dependence of probability density on ase is nonlinear
[equation (4)], this range produces remarkably different
predictions in our recurrence example (Figure 3). se could
easily show a similar (factor of 8)) variation in the
seismogenic portion of the crust. So earthquake occurrence
can be said to be time-dependent as observed in the lab; yet,
quantitative prediction based on lab values is suspect. Field
based estimates of ase (0.4–1.2 MPa) are generally much
lower than lab-predicted values [see summary by Gomberg
et al., 2000, p. 7862–7863]. Moreover, it is difficult to
evaluate the value of ase for fault slip, given that the
physical basis of this rate dependence in lab faulting experi-
ments is not known. Second order instantaneous rate
dependencies are ubiquitous in low temperature rock defor-
mation: friction [Dieterich, 1979], fracture [Scholz, 1968a],
crack growth [Atkinson and Meredith, 1987a, 1987b], and
plasticity [Mares and Kronenberg, 1993]. So not knowing

the mechanism responsible during earthquake faulting, we
know little of how to extrapolate controlled lab observations
to temperatures, pressures, fault mineralogy, and pore fluid
chemistries of natural seismic fault zones.
[6] In this paper we examine the instantaneous rate

dependence observed in a wide variety of laboratory experi-
ments and in a variety of different rock types and find some
instances where an underlying physical process of this rate
dependence in rock friction tests can be tentatively identi-
fied. Using a normalization scheme modified from one
proposed by Tullis and Weeks [1987] we address whether
laboratory observations of the instantaneous rate depen-
dence in rock friction are consistent with rate dependence
measurements from higher temperature dislocation glide
experiments. In addition, we show that the same normali-
zation scheme can be used to compare rate dependence in
friction to rock fracture and to low temperature crack
growth tests.

2. Comparison Between Low Temperature
Plasticity and Friction

[7] At constant strain rate and room temperature, some
mineral phases, particularly weak phases such as phylosili-
cates can deform via dislocation glide (low temperature
crystal plasticity). For glide, rock strength depends weakly
and logarithmically on the strain rate; the rate dependence is
well understood as a thermally activated process and the
dislocation glide law [e.g., Mares and Kronenberg, 1993]
has the Arrhenius form

_e ¼ _e* exp $
E* $ sDW

kT

+ ,

: ð5aÞ

If this flow law is expressed with strain rate as the inde-
pendent variable, the observed differential strength is the
sum of a nominal resistance and a rate-dependent term

sD ¼
E*
W

þ kT

W
ln

_e
_e*

; ð5bÞ

where sD is differential stress, E* is the stress-free
activation energy, W is the apparent activation volume and
_e* is a reference strain rate. The reference strain rate _e* is
not arbitrary, and E*, W, and _e* are determined experimen-
tally from tests at multiple temperatures and strain rates. For
purposes that will become clear in the following analysis,
we wish to write equation (5b) with reference to an arbitrary
strain rate that is proportional to _e*; _e0 ¼ c _e*. Thus the
nominal strength at _e0 is sD0 = E*/W +Aglide ln c and we
have

sD ¼ sD0 þ Aglide ln _eY
$

_eY0

% &

ð5cÞ

where the rate-dependent coefficient is Aglide = kT/W.
[8] This rate dependence of low temperature plasticity is of

the same form as the instantaneous rate dependence of rock
friction [Dieterich, 1979], represented by the alnV term in
equation (3), and seen in rate stepping tests (Figure 4a–4b).

Figure 3. Log normal distribution of recurrence intervals
with !ltr = 4.6 ln(yr), s = 0.31 ln(yr) (black) shown with
probability density for recurrence of a threshold model
(grey) and a simple failure model [Dieterich, 1994] subject
to a stress increase Dt = 0.3 MPa, at t0 = 70 yr, with _t =
10 MPa/100 yr, b = 0.01, sn = 100 MPa, dc = 5 mm and two
choices of a, a = 0.005 (dashed) and a = 0.02 (dotted).
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Rate stepping tests are well described by the rate and state
friction equation

m ¼ m0 þ a ln V=V0ð Þ þ b ln q=q0ð Þ ð6Þ

[Dieterich, 1978, 1979; Ruina, 1983] of which equation (3)
is a simplification appropriate for modeling the onset of
rapid slip [Dieterich, 1992]. Given the common mathema-
tical form, we may ask whether the instantaneous strain rate
dependence of friction for some rocks is controlled by
dislocation motion.
[9] At the outset, such friction and plasticity measure-

ments are difficult to compare due to basic differences in the
test configuration and conditions. There are the general

differences in stress. Plasticity tests are typically conducted
at higher confining pressure than rock friction tests and
results are reported as differential stress on the sample
versus strain rate, while rock friction results are reported
as dimensionless shear resistance on a fault plane of known
orientation versus slip rate. In addition, the inelastic process
operating in plasticity experiments are distributed through-
out the rock mass, while the processes resulting in rate
dependence in rock friction tests are operating at very
highly stressed contacting asperities across the fault. Con-
sequently, the local ambient contact stresses depend on the
specific asperity geometry. These contact stresses are not
easily estimated from the macroscopic stress applied to the
sample, and are generally unknown.
[10] In the following, we correct for differences in stress

state and strain rate between different test configurations by
appealing to basic aspects of friction theory. Our approach
follows from Tullis and Weeks [1987] who recognized that
the stress at asperity contacts was larger than the macro-
scopically applied stress approximately by the ratio of the
nominal fault area to the real contacting area, and that
differences in stress state can be removed by normalizing
the data. We develop a normalization scheme that accounts
for varying stresses and strain rates among different types of
rock mechanics tests.

2.1. Rock Friction Theory

[11] In laboratory studies of frictional sliding on bare
rock, sliding surfaces are typically machined flat and then
roughened with grinding compound. The force applied
normal to the plane Fn is concentrated at the relatively
few asperity contacts across the roughened surfaces. What is
generally observed is that, to first order, the ratio of macro-
scopically measured shear t to normal stress sn is indepen-
dent of normal stress. Friction theory assumes that the
macroscopically observed resistance is due to resistance
only at the asperity contacts. The average asperity normal
stress is sc = Fn/n!Ac where n is the number of contacts and
!Ac is the average asperity contact area. The macroscopic
normal stress is sn = Fn/AT where AT is the total fault plane
area. Shear load Fs applied to the surface causes shear
displacement, at an average contact shear strength tc =
Fs/n!Ac. The macroscopic shear stress is t = Fs / A. The
shear stress t = tc!Ac / AT and normal stress sn =sc !Ac / AT
can be written without specific reference to the forces. If, as
observed, the macroscopic ratio of shear stress to normal
stress

m ¼ t
sn

¼ tc
sc

ð7aÞ

is approximately constant, the contact scale shear and normal
stress ratio is also approximately constant.
[12] In addition to the first order friction resistance given

by equation (7a), there are second order dependencies of
friction on time of contact (age) and on slip velocity.
Contact area increases slightly with time of contact due to
small amounts of yielding at highly stressed asperity con-
tacts [Dieterich and Kilgore, 1994]. However, because
individual asperity contacts are very small relative to the
total fault area, they have limited times of contact while the
fault is sliding at a significant rate. Therefore any time-

Figure 4. Examples of the instantaneous rate dependence
of faulting. Rate stepping tests with a change in sliding
velocity from 10 to 1 mm/s at constant normal stress from
experiments on granite [Beeler et al., 1996] and muscovite
[Scruggs and Tullis, 1998]. In the case of granite, the
instantaneous rate dependence is followed by a similar sized
displacement dependent change of the opposite sense. For
muscovite the displacement dependent effect is much
smaller.
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dependent creep process operating at an asperity has a
limited duration. While the contribution to resistance to slip
of a single asperity may increase with time during static
contact, there will be an ongoing reduction in the average
asperity contact area due to shearing; after slip equivalent to
the contact dimension, an asperity will no longer be in
contact. So during slip there are two competing processes
which determine the effective total contact area: time under
load which tends to increase contact area, and slip which
tends to replace yielding contacts bringing new, presumably,
undeformed asperities into contact. This concept of compe-
tition between slip and time can be parameterized by
considering the average age of the asperity contacts. For
example, for constant slip rate V, average age takes the value
!q = dc/2V where dc is the representative length of the
contacts on the fault surface. Conversely, during static
contact dq = dt.
[13] These ideas have been incorporated into rock friction

theory by allowing the asperity contact normal stress to be
an explicit function of age q,

sc ¼ s0 þ h qð Þ ð7bÞ

[Dieterich, 1979; Linker and Dieterich, 1992], where s0 is a
reference value of contact stress and h is a function that
decreases with age. Typically the dependence of friction on
age is second order (for example, *5% per decade change
for granite at room temperature).
[14] For a fault sliding at steady state, an increase in sliding

velocity produces the age-dependent effect equation (7b)
and in addition an immediate increase in fault strength that
scales with the size of slip rate change. The latter is the
positive instantaneous rate-dependent effect that has been
incorporated into friction theory by allowing the shear
strength of asperity contacts to depend on sliding rate as

tc ¼ t0 þ gðV Þ; ð7cÞ

[Dieterich, 1979; Ruina, 1983]. This effect is also second
order (a few percent per decade change in slip rate is typical
for granite at room temperature).
[15] The second order dependencies of fault strength on

age and slip rate, equations (7b) and (7c), can be combined
with equation (7a) into a relatively simple relation for
friction

m ¼ t
sn

¼ t0 þ gðV Þ½ '
s0 þ hðqÞ½ '

½s0 $ hðqÞ'
½s0 $ hðqÞ'

Multiplying out the bracketed expressions in the numerator
and denominator of the above expression and discarding the
product of second order terms leads to the form of friction
relation developed by Dieterich [1979] which is the basis of
rate and state friction equations by Ruina [1983] and Rice
and Ruina [1983]:

m ¼ t0
s0

þ gðV Þ
s0

$ t0hðqÞ
s2
0

: ð8aÞ

On the right side of equation (8a), the first term is first order,
the second term is the second order positive instantaneous
dependence of contact shear resistance on sliding velocity,

and the third term is the second order negative dependence
of contact normal stress on contact age. Empirical
expressions for the rate and age dependencies provide the
remaining details of the rate and state formulation: g(V) = A
ln (V / V0) and h(q) = b ln(q / q0). Expressing the first order
term as t0 / s0 = m0, we have

m ¼ m0 þ
A ln V=V0ð Þ

s0
$ m0b ln q=q0ð Þ

s0
: ð8bÞ

The rate and state constitutive equation (8b) can be
expressed using more conventional notation as

m ¼ m0 þ a ln V=V0ð Þ þ b ln V0q=dcð Þ ð8cÞ

with coefficients a = A / s0, b = $m0b/s0, q0 = dc / V0, and
dc is a representative asperity contact dimension [Dieterich,
1979; Ruina, 1983]. The steady state value of age is qss =
dc / V and the steady state value of friction is mss = m0 +
(a $ b) lnV / V0.

2.2. Normalization Scheme

[16] To compare plasticity and rock friction results we
eliminate differences in stress and strain rate. For friction,
stress differences are accounted for by normalizing
equation (8c) by the resistance m0 resulting from slip at
the reference slip rate V0 leading to

m
m0

¼ tcs0

sct0
¼ 1þ a

m0

ln
V

V0
þ b

m0

ln
q
q0

ð9aÞ

[Tullis and Weeks, 1987]. Recalling the equivalences a = A /
s0 and b = $ m0b / s0, we find that

m
m0

¼ 1þ A

t0
ln

V

V0
$ b
s0

ln
q
q0

: ð9bÞ

Note that there is no reference to the macroscopic stresses
on the right side of equation (9b). The normalized
coefficient of the rate-dependent term (A / t0) is the actual
contact shear strength coefficient A, normalized by the stress
driving shear deformation on the contact scale, the nominal
contact shear strength t0.
[17] The same approach can be used to normalize the

glide strength (5), resulting in

sD

sD0
¼ 1þ Aglide

sD0
ln

_e
_e0
: ð10Þ

The normalized rate-dependent coefficient is the measured
rate dependence divided by the nominal stress and has the
same interpretation as that in equations (9a) and (9b), it is
the rate dependence of the stress driving deformation,
normalized by the ambient value of that stress. To compare
the instantaneous rate-dependent coefficients the slip
velocity in equation (10) must be converted to strain rate
and the nominal strength must be determined at the same
reference strain rate _e0 for equations (9a), (9b), and
(10). Taking dc from the friction relation to be one half of
the average contact dimension, the strain rate for friction is
_e0 + V / 2dc.
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2.3. Comparison of Rate Dependencies

[18] On the basis of a comparison between the rate
dependence of frictional sliding of serpentinite at low
sliding rates and the rate dependence for crystal plastic
deformation of biotite single crystals at 400!C, Reinen et al.
[1994] argued that dislocation glide is the mechanism
underlying the rate dependence of serpentinite. Although
Escartin et al. [1997] subsequently found no microstruc-
tural evidence of dislocation motion in serpentine rock
failure tests at room temperature, the Reinen et al. [1994]
argument may apply at asperity contacts on fault surfaces of
other weak minerals known to deform by dislocation glide
at room temperature, including biotite, muscovite, and illite,
and also to strong materials that deform via dislocation
motion at room temperature such as olivine [Evans and
Goetze, 1979]. Nakatani [2001] has argued that some form
of crystal plasticity controls the rate dependence of strong
quartzofeldspathic rocks, but we are aware of no known
instances of dislocation motion in these materials at room
temperature. So we explore the idea of Reinen et al. [1994]
that dislocation glide controls the friction rate dependence
using nonquartzofeldspathic materials at room temperature.
In comparing rate dependencies of friction and low temper-
ature plasticity, the Tullis and Weeks [1987] approach taken
by Reinen et al. [1994] makes implicit use of equations (9a),
(9b), and (10) but they did not account for the dependence
of the rate-dependent coefficient in equation (10) on tem-
perature and they did not attempt to convert frictional slip
rate to contact strain rate so that rate dependencies of
friction and distributed deformation are compared at equiv-
alent rates.
[19] We compare friction and dislocation glide data for

muscovite and talc; results are summarized in Table 1
(friction) and Table 2 (glide). Microstructural analysis of
muscovite single crystals deformed with s1 at 45! to the 001
plane, at pressure between 50 and 400 MPa and temper-
atures between 20! and 400!C indicates deformation pre-
dominately by dislocation glide [Mares and Kronenberg,
1993]. Analysis of these 400!C rate stepping experiments
(Figure 6) for _e0 = 1 ) 10$1 gives a normalized coeffi-
cient of rate dependence of dislocation glide equal to Aglide /
sD0 = 0.034 (Figure 5). Note that there is variability in the
strength and rate dependence, thus their ratio has significant
uncertainty. To compare with room temperature friction
data, the difference in temperature (673 to 295 K) introdu-
ces a reduction in Aglide of a factor of 2.3 for the single
crystal glide data. The Mares and Kronenberg [1993] single
crystal data extrapolated to room temperature yield Aglide/
sD0 = 0.015.

[20] The normalized coefficient of rate dependence from
room temperature friction tests for muscovite [Scruggs and
Tullis, 1998] is estimated using equations (9a) and (9b) but
there is some ambiguity in the strain rate. These experi-
ments were conducted on 1-mm thick layers of powdered
muscovite rather than bare rock surfaces where slip is
known to be localized. If the deformation is distributed
within the layer the characteristic distance dc is related both
to the average contact dimension and the thickness of the
actively deforming layer [Marone and Kilgore, 1993]. In the
case of these particular experiments, the inferred value of
dc = 125 mm from rate stepping tests is quite a bit larger than
dc in the granite bare surface experiments, consistent with
distributed deformation. Fortunately, the normalization
scheme is insensitive to differences in strain rate of this
magnitude; if we use a range dc = 9 to 125 mm, m0 varies
from 0.359 to 0.372 and we find A / t0 = 0.017 for either
choice. This normalized rate dependence is similar to the
single crystal glide value suggesting that the instantaneous
rate dependence in muscovite could well be related to
dislocation motion. Note if glide controls the instantaneous
rate dependence of friction, the rate coefficient should scale
linearly with temperature, as envisioned in recent process-
based rock friction theories [e.g., Rice et al., 2001, Nakatani,
2001] and observed in the experiments of Nakatani [2001].

Table 1. Rock Friction Data

Rock Type m0 dc (mm) a _e0, 1/s a/m0 Reference

Granite 0.732 9.1 0.008 1 ) 10$1 0.011 Beeler et al. [1996]
Marble 0.773 9 0.0085 1 ) 10$1 0.011 Tullis and Weeks [1987]
Shalea 0.482 20 0.0052 1 ) 10$1 0.011 Saffer and Marone [2003]
Muscovite 0.364 125 0.0062 1 ) 10$1 0.017 Scruggs and Tullis [1998]
Talc 0.138–0.186 125 0.00335–0.0065 1 ) 10$1 0.024–0.035 Scruggs [1997]
Quartzite 0.705 1.3 0.0064 1 ) 10$1 0.009 Weeks et al. [1991]
Silica Glass 0.709 1.95 0.013 1 ) 10$1 0.018 Weeks et al. [1991]

aData from inversions of rate steps at 2–20 mm/s, from Table 2 and Figure 4 of Saffer and Marone [2003].

Figure 5. Rate dependence due to dislocation glide in
muscovite and talc at 400!C. These are from rate stepping
tests on muscovite at 200 MPa confining pressure [Mares
and Kronenberg, 1993] and talc at 300 MPa [Hickman et al.,
1997].
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[21] In low velocity friction tests on serpentinite, Reinen
et al. [1994] observed a transition to a more strongly rate-
dependent process that they tentatively identified as glide.
Similar low velocity rate stepping and hold tests on mus-
covite do not seem to produce such a transition and the rate
dependence in the velocity range 0.001 to 10 mm/s is
approximately constant. Our preliminary conclusion is that
dislocation glide is responsible for the instantaneous rate-
dependent effect in muscovite friction at all laboratory slip
rates.
[22] Similar analysis is possible for talc using deforma-

tion data for intact polycrystalline samples from Hickman
et al. [1997] and friction tests of Scruggs [1997]. The
intact polycrystalline experiments were conducted at pres-
sures between 50 and 400 MPa and temperatures between
20! and 600!C. Analysis of 400!C rate stepping experi-
ments, again taking _e0 = 1 ) 10$1, produces a normalized
coefficient of rate dependence of A / sD0 = 0.066
(Figure 5). The value of A must again be corrected to room
temperature to be compared with the friction data; using the
same procedure, we find A / sD0 = 0.029 at ambient
conditions. The normalized coefficient of rate dependence
from two room temperature friction tests for talc gouge is
estimated as before and we find A / t0 = 0.024 to 0.035.
This value bounds the polycrystalline value suggesting that
the friction instantaneous rate dependence could well result
from the same mechanism controlling the deformation in

the intact polycrystalline experiments. Though Hickman et
al. [1997] did not do microstructural analysis on their
samples, observations of dislocations within the basal inter-
layers of talc [Amelinckx and Delavignette, 1962] indicate
that easy glide is readily activated at room temperature. The
dependence determined from intact polycrystalline samples
is thus interpreted to represent glide.

3. Instantaneous Rate Dependence of
Brittle Rock Failure

[23] In low temperature, constant strain rate experiments
performed on crystalline rocks peak strength prior to frac-
ture and strength during brittle yielding depend weakly and
logarithmically on the strain rate approximately following
an empirical relationship identical to equation (5c)

ŝD ¼ ŝD0 þ Â ln _e= _eoð Þ ð11aÞ

[e.g., Heard, 1963; Rutter, 1974; Lockner, 1998] (Figure 6).
It is widely argued that subcritical crack growth underlies
the rate dependence of low temperature failure in crystalline
rock equation (11a) [e.g., Scholz, 1968a], but in some
materials there may be contributions from plasticity or other
mechanisms.

Table 2. Glide Data

Rock Type sD0, MPa A, MPa _e0, 1/s A/sD0 Reference

Muscovitea 70 1.05 1 ) 10$1 0.015 Mares and Kronenberg [1993]
Talcb 179 5.2 1 ) 10$1 0.029 Hickman et al. [1997]

aAverage of three experiments at 400!C, 200 MPa confining pressure, A is corrected to room temperature.
bAverage of two experiments at 400!C, 300 MPa confining pressure, A is corrected to room temperature.

Figure 6. Instantaneous rate dependence of intact rock strength. The granite data of Lockner [1998]
represent peak stresses from different experiments at different strain rates for 50, 100, 150, and 200 MPa
confining pressure. The marble data of Heard [1963] represent strength from different experiments at
different strain rates measured at 2, 5, and 10% strain, all data at 500 MPa confining pressure. The shale
data of Ibanez and Kronenberg [1993] reflect changes in stress due to strain rate steps for single
experiments at 250 MPa confining pressure. In all cases the reference strain rate is 1 ) 10$1/s.
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3.1. Normalization

[24] For the moment, we assume that the observed
behavior described by equation (11a) is controlled by an
unknown underlying rate-dependent deformation mecha-
nism that has a material yield strength ty and that for any
particular set of conditions (temperature and stress) the
observed differential stress is proportional to the yield
strength, for example, ŝD = Cty. The coefficient C can be
considered to be like the reciprocal of a stress intensity
factor that simply relates the macroscopically applied stress
to the yield stress. As it is well known that both strength
[equation (11a)] and rate dependence increase with confin-
ing pressure in brittle rock failure tests [e.g., Lockner,
1998], by assuming that ty is a material property we are
implicitly assuming that C increases with confining pres-
sure. Under these assumptions we write yield strength as

ty ¼ ty0 þ A ln _e= _e0ð Þ ð11bÞ

where ty0 = sD0 / C and A = Â/C .The significant difference
between equations (11b) and (11a) is that ty0 and A are
assumed material constants associated with some process of
yielding on the microscopic scale, whereas ŝD0 and Â are
macroscopically observed pressure-dependent coefficients.
[25] Applying the normalization scheme developed in

section 2.2 to equation (11b) we find

t
ty0

¼ 1þ A

ty0
ln _e= _e0ð Þ ¼ ŝD

ŝD0
¼ 1þ Â

ŝD0
ln _e= _e0ð Þ: ð11cÞ

As before, the normalization produces equivalence between
the normalized macroscopically observed rate dependence
and the rate dependence associated with the underlying
process. Namely, the measured rate dependence divided by
the nominal stress is the rate dependence of the stress
driving deformation on the microscopic scale, normalized
by the ambient value of that stress. In addition, when
comparing equation (11c) with equations (9a) and (9b),
geometric differences between measured differential stress
sD in rock failure tests and shear stress in friction tests (t =
0.5sD sin 2b where b is the angle between the fault normal
and the greatest principal stress) are also eliminated.

3.2. Comparison of Rate Dependencies

[26] We compare the instantaneous rate dependence of
rock failure with that of friction for some representative
crustal rock types, granite, marble, and shale using equation
(11c) and equations (9a) and (9b). The rate dependence of

rock failure data for these different materials is shown in
Figure 6. The resulting values are listed in Tables 1 and 3.
Both intact failure tests and friction yield values of the
normalized rate-dependent coefficient in the range 0.007 to
0.011 for granite at room temperature. We consider these to
be identical given the approximate nature of the compari-
son. Even better agreement is found for the rate dependence
for marble, with a range 0.01 to 0.011. For shale the range is
also narrow, from 0.01 to 0.011. Our normalization of
friction and intact failure is a formal version of Tullis and
Weeks [1987] who concluded that a common mechanism
was responsible for the instantaneous rate dependence in
carbonate rock fracture and friction.
[27] In the case of granite, the similarity between rock

failure and rock friction rate dependencies was previously
noted by Lockner [1998] who compared normalized fracture
rate dependence dsD/sDd _e to a from friction tests of
Blanpeid et al. [1998]. Though Lockner’s approach does
not normalize the friction data and does not consider
differences in strain rate, these differences have little effect
on the outcome. These data are somewhat insensitive to
differences in strain rate because of the logarithmic depen-
dence and the small rate coefficient. As the friction coeffi-
cient is near 1 not normalizing by it makes little difference
and Lockner concluded, as we have, that the same physics
underlies the instantaneous rate dependence of friction and
rock failure in granite.

4. Crack Growth and Friction

[28] Many studies since Scholz [1968a] have argued or
assumed that the rate dependence of rock fracture strength is
related to the growth rate-dependence of individual tensile
cracks in double cantilever experiments such as those on
glass [e.g., Lawn, 1993] and single mineral crystals [e.g.,
Atkinson, 1984]. A common argument in the brittle rock
mechanics literature is that precursory (secondary creep)
and volumetric strain observed in rock failure tests [Scholz,
1968a; Lockner, 1998] result from the collective growth of
many initially subcritical cracks. Figure 7 shows examples
of ‘‘subcritical’’ crack growth, including data from single
cracks propagating in quartzofeldspathic materials, marble
[Atkinson and Meredith, 1987a, 1987b], and fused silica
glass [Lawn, 1993]. The horizontal axis is crack propagation
velocity and the vertical axis is the stress intensity factor Ki;
stress intensity is related to the remotely applied driving
stress s and to the crack length c as Ki / s

ffiffiffi

c
p

. Fortunately,
crack growth experiments (Figure 7) are commonly done
using a geometry where Ki is independent of crack
dimensions and thus [Atkinson and Meredith, 1987b], and
the crack length dependence can be ignored. As shown,
subcritical crack growth has a nonlinear viscous rheology;
as the stress on the sample increases crack velocity
increases, or alternatively, as the crack propagation velocity
increases, the crack strength increases. Subcritical crack
growth in minerals is generally similar to that in glass and,
at comparable temperature, crystalline materials (quartz) are
somewhat stronger than their amorphous counterparts
(fused silica). Though not shown in Figure 7, there is a
measurable temperature dependence to crack growth
[Atkinson and Meredith, 1987a, 1987b], indicating that a
thermally activated mechanism controls growth.

Table 3. Brittle Intact Rock Data

Rock Type
sD0,
MPa

A,
MPa _e0, 1/s A/sD0 Reference

Granitea 857 6.1 1 ) 10$1 0.007 Lockner [1998]
Marbleb 298 2.95 1 ) 10$1 0.010 Heard [1963]
Shalec 205 1.99 1 ) 10$1 0.010 Ibanez and

Kronenberg [1993]
aRoom temperature experiments, stress measured at peak, for data at 50,

100, 150, and 200 MPa confining pressure; data are averaged.
bRoom temperature experiments, stress measured at 2, 5, and 10%, at

500 MPa; data are averaged.
cRoom temperature experiments at 250 MPa confining pressure,

deformed with s1 45! to bedding.
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[29] For well-studied minerals and for other brittle mate-
rials, it is widely held that subcritical crack propagation rate
depends on a chemically reactive environment, and rates are
determined by the chemical reaction at the crack tip [i.e., the
rate at which bonds are broken; Charles and Hillig, 1962;
Atkinson and Meredith, 1987a, 1987b]. This particular type
of subcritical crack growth is known as stress corrosion, and
has a crack tip velocity v with an Arrhenius dependence on
stress and temperature:

v ¼ v0 exp
$E þ Wst $ WmG=r

RT

% &

ð12aÞ

[Charles and Hillig, 1962] where E is the stress free
activation energy, W is the activation volume, Wm is molar
volume, G is the interfacial energy, R is the gas constant,
and r is the radius of curvature at the crack tip.

4.1. Normalization

[30] Direct comparison between the rate dependence of
subcritical crack growth and that of rock friction can be
made following the procedure outlined previously. Because
subcritical crack growth occurs in a vacuum as well as in the
presence of water (Figure 7), rather than use the Charles and
Hillig equation, which is specific to water-assisted crack
growth (stress corrosion), we use a more general, Arrhenius
form

v ¼ v0 exp
$E0 þ VKi

RT

% &

ð12bÞ

where is an empirical constant and E0 is an activation
energy [Wiederhorn and Bolz, 1970; Wiederhorn, 1978].

Expressing this relationship with crack velocity v as the
independent variable and the macroscopic stress as the
dependent variable leads to

s / E0

V
þ RT

V
ln

v

v0

+ ,

ð12cÞ

We normalize this expression by the applied stress s0 that
results in crack propagation at rate v0;

s
s0

¼ 1þ RT

E0
ln

v

v0
ð12dÞ

Note that the rate-dependent term in equations (12a), (12b),
(12c), and (12d) is analogous to that in equations (9a) and
(9b); it is the rate dependence of the remotely applied stress
driving crack propagation, divided by the nominal value of
that stress. In addition to eliminating the unknown z, an
unknown constant of proportionality relating stress to stress
intensity is eliminated by the normalization. Related
analysis and comparison between crack growth and friction
was undertaken by Kato et al. [1993].

4.2. Comparison of Rate Dependencies

[31] To compare the crack growth experiments as
described by equations (12a), (12b), (12c), and (12d) to friction
data as described by equations (9a) and (9b) or to rock failure
data as described by (11c) the rate of crack propagation vmust
be equated with the fault slip rate V or with fault zone strain
rate. Lab fault slip rates and crack growth rates are very
different in magnitude. The upper limit of friction rate
stepping tests velocity may reach 1 to 10 mm/s while crack
growth rates reach 1 ) 10$2 m/s. If we equate v directly to V,
implying that frictional slip produces crack growth at the
same rate, and choose a reference velocity of 1.8 mm/s, the
ratio RT/E0 = 0.055 from equations (12a), (12b), (12c), and
(12d) for marble does not compare favorably with the
analogous friction parameter a / m0 = 0.011. With the same
assumption (of v = V ) a discrepancy of similar size is noted
for quartz, granite, and silica glass. This discrepancy might be
due to very large differences in the true rate of crack growth
from that assumed at a particular fault sliding velocity.
However, the crack velocity necessary to account for the
discrepancy in normalized rate dependence appears to be
unreasonably large and of the opposite sense to our expecta-
tion, as follows. One would expect that frictional slip pro-
duces many cracks at asperity contacts such that the average
rate of growth of a representative crack is smaller than the slip
rate. However, to reduce RT/E0, E0 must be larger. Since
crack growth has a positive rate dependence, larger values of
E0 correspond to larger values of the reference velocity v0,
rather than smaller values. To produce a normalized rate
dependence of crack growth similar to that seen in the friction
experiments, the reference velocity must greatly exceed the
compressive wave speed. Obviously, frictional slip can not
produce subcritical crack growth at asperity contacts with a
propagation velocity approaching the elastic wave speed.
[32] To estimate the normalized rate dependence of crack

growth in geologic materials, we arbitrarily allow that the
crack growth during laboratory friction experiments occurs

Figure 7. Rate dependence of subcritical crack growth in
quartzofeldspathic materials, silica glass, and marble at room
temperature. The vertical axis is stress intensity which is
proportional to stress. With exception of the synthetic quartz
in vacuum (diamonds), all experiments were conducted in the
presence of liquid or atmospheric water. The source
references for these experiments are listed in Table 4. The
normalizing velocity used is 1 m/s (1 ) 106 mm/s).
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at subcritical rates of 1 m/s (v0 in (12) is 1 m/s). This is
about one order of magnitude higher than the largest rates in
typical subcritical crack growth experiments. Results are
summarized in Table 4 for comparison with Tables 1 and 3.
Silica glass has a normalized crack growth rate dependence
of RT/E0 = 0.018 [Lawn, 1993], which is identical to the
normalized friction rate dependence of a/m0 = 0.018 in silica
glass [Weeks et al., 1991]. This result may seem satisfying;
however, the friction data are poor quality. The normalized
rate dependence of subcritical crack growth in Westerly
granite at room temperature is RT/E0 = 0.021 [Atkinson and
Meredith, 1987a] while the analogous normalized rate-
dependent coefficient from Westerly granite friction tests
is only a/m0 = 0.011 [e.g., Beeler et al., 1996], roughly one
half the crack growth value. This result is consistent with
that of Kato et al. [1993] who used a somewhat different
approach and found crack growth in granite to have larger
direct rate dependence than granite friction. The normalized
rate-dependent coefficient from room temperature experi-
ments on synthetic quartz in water and in vacuum are 0.032
to 0.035 [Meredith and Atkinson, 1982], while the coeffi-
cient from quartzite friction tests is 0.009 [Weeks et al.,
1991], less than one third the crack growth value. Essen-
tially identical results are found for marble; for crack growth
the normalized rate dependence at room temperature is
0.032 while the normalized friction data of Tullis and Weeks
[1987] exhibits a rate dependence of 0.011, again about one
third the crack growth value. We conclude that quartz-
ofeldspathic rocks and marble show rate dependencies that
are not consistent with crack growth. While there is great
uncertainty in the proper reference crack velocity to use in
comparisons of friction and crack growth data, the differ-
ence can not be reconciled by adjustments in the rates
chosen as the reference.

5. Discussion

[33] Determining the deformation mechanisms underly-
ing the instantaneous rate dependence of natural seismic
faulting is our primary goal. To this end, the study is a
limited success. While we infer that dislocation glide under-
lies friction rate dependence of talc and muscovite, these
minerals are rate strengthening and incapable of sustaining
rapid earthquake slip. Those particular results may have
implications for the mechanics of fault creep, but have no
apparent relevance to natural seismicity. Our most signifi-
cant result for studies of earthquake occurrence and earth-
quake probability is finding that for particular rock types

friction and rock failure rate dependencies are essentially
identical. If this proves to be a general result, modeling of
time-dependent failure, earthquake probability, and time-
dependent seismic hazard in different settings (for example,
mature fault zones, unfaulted rock), can be represented by
the same rock-type specific material constant.
[34] Our comparison of crack rate and friction rate

dependencies does not support arguments that crack growth
controls the instantaneous rate dependence of rock friction
and fracture in quartzofeldspathic rock [e.g., Scholz, 1968a,
1968b; Lockner, 1998]. In all cases, the crack growth rate
dependencies are larger than the instantaneous rate depen-
dence determined for friction. Arguably, subcritical crack
growth occurs in all instances of natural faulting in the
shallow crust, in laboratory rock fracture tests and in friction
experiments, as indicated by pervasive dilatant and shear
microcracks, macroscopic fracture, and wear material
(gouge) that accompany frictional sliding. The disagreement
between faulting and crack growth experiments is particu-
larly hard to understand.
[35] If fracture and friction instantaneous rate dependen-

cies in quartzofeldspathic rocks and carbonates are controlled
by the physics of crack growth, crack growth rates must be
called upon that differ from those that have been measured
experimentally. Subcritical crack growth may be controlled
by reaction rates, or diffusion rates and these regimes may be
defined. All subcritical crack growth data used in our com-
parison have been collected in the reaction-controlled regime.
Diffusion-controlled regime 2 crack growth shows a higher
rate dependence than regime 1, and probably will more
poorly match rate dependencies of friction. At lower (regime
0) and higher crack growth rates (regime 3), the expected rate
dependencies can be lower than in regime 1 [Atkinson and
Meredith, 1987a]. Another possible difference between crack
growth experiments and typical rock fracture and friction
tests might be the crack propagation mode. All the subcritical
crack growth data are for the tensile growth, mode I, whereas
rock fracture and rock friction tests may involve mixed mode
fracturing. As the rate dependencies of crack extension in
modes II and III or mixed modes have not been measured for
rocks andminerals, appropriate values for comparison are not
available.
[36] Somewhat independent of the success of this partic-

ular study, as summarized by specific comparisons in Tables
1–4, the normalization scheme can produce an estimate of
the activation energy underlying the instantaneous rate
dependence. For example, the case of dislocation glide
equation (10) with normalized rate dependence Aglide /
sD0 = kT/(E* + kT ln c). If the reference strain rate is
chosen as _e0 ¼ _e*, then Aglide / sD0 = kT/E* , and the
ratio will directly reflect the process activation. So if the
same reference strain rate is used to normalize the friction
data, and the friction instantaneous rate dependence is
controlled by dislocation glide, the ratio a/m0 directly reflects
the activation energy [also see Nakatani, 2001]. Because
activation energies for glide are typically 20 or more times
larger than kT, the method is forgiving in that the choice of
reference strain rate need not be exact. Similar, results might
be possible for crack growth. However, the success relies on
knowing the proper reference within a couple of orders of

Table 4. Crack Growth Data

Rock Type E0/x RT/x v0, mm/s RT/E0 Reference

Granite 1.92 0.041 1 ) 106 0.021 Meredith and
Atkinson [1985]

Marble 0.886 0.028 1 ) 106 0.032 Atkinson [1984]
Synthetic Quartz

(Vacuum)
1.34 0.047 1 ) 106 0.035 Meredith and

Atkinson [1982]
Synthetic Quartz 1.23 0.040 1 ) 106 0.032 Meredith and

Atkinson [1982]
Silica Glass 0.650 0.012 1 ) 106 0.018 Lawn [1993]
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magnitude which will be difficult without already knowing
the deformation mechanism. We conclude that inferring
activation energy from the normalized data is not an ade-
quate alternative to direct measurements such as temperature
stepping tests.

6. Conclusions

[37] The rate dependence of rock failure strength and the
instantaneous rate dependence of friction are consistent for
three different rocks considered: a strong quartzofeldspathic
material (granite), an intermediate strength carbonate (mar-
ble), and for a weak clay-rich material (illite-bearing shale).
These results suggest that the physics controlling the
instantaneous rate-dependent brittle behavior in rock failure
and rock friction of these materials are the same. The
instantaneous rate dependence of room temperature friction
for two weak phases, mica and talc, are consistent with
higher temperature experiments on these minerals where
deformation is accommodated by dislocation glide. How-
ever, the room temperature instantaneous frictional rate
dependence of stronger materials, quartz, granite, and mar-
ble are not quantitatively consistent with available room
temperature data from crack growth, suggesting that the
instantaneous frictional rate dependence for strong, brittle
rocks does not involve crack growth. We view this as
unlikely but have not reconciled the discrepancy.

Appendix A: Recurrence Probability Density

[38] We calculate earthquake recurrence probability den-
sity using a log normal distribution

P trð Þ ¼ 1

str
ffiffiffiffiffiffi

2p
p exp $ ln tr $!ltr

" #2
.

2s2
' (

ðA1Þ

where tr is recurrence interval, !ltr is the average log
recurrence interval and s is the standard deviation of log
recurrence interval (Figure 1, black). P(tr) is the unperturbed
probability density, the probability distribution in the
absence of a triggering stress change. The stressing rate _t
is assumed to be constant.
[39] For time-dependent failure we use an earthquake

occurrence rate formulation [Beeler and Lockner, 2003],
that is a generalization of Dieterich’s [1994] approach, [also
see Gomberg et al., 2000] to determine how stress changes
the earthquake probability density. Note that probability
density is a normalized recurrence rate having units time$1.
Thus there is a direct proportionality between probability
density and earthquake rate r = dn/dtr

rðtrÞ ¼ nTPðtrÞ ðA2Þ

where n is the event number and nT is the total number of
events. For a recurring earthquake with a known, bounded
probability density, both the unperturbed (P(tr)) and

perturbed (P(t)) probability densities must satisfy
R

1

0

P(t)dt =
R

1

0

P(tr)dtr = 1 = nT and the total number of events is one. So

rate and probability density are equivalent. The rate of

recurrence in the absence of a static stress change above the
background stressing is r (tr) = Dn / Dtr where tr is the
unperturbed recurrence time. Following a stress change,
the recurrence time may be increased or decreased by an
amount tc = tr $ t where tc is the clock advance (positive
values indicate that recurrence time is advanced [Gomberg et
al., 1998]), and t is the recurrence time due to the constant
stressing and the static stress change. Using this choice of
variables the unperturbed recurrence rate is r(tr) =Dn/(Dtc +
Dtr). Defining the perturbed recurrence rate as r(t) =Dn /Dt,
the reciprocal rate as a function of time is

1

r
ðtÞ ¼ 1

rðtrÞ
$Dtc

Dn
ðtÞ: ðA3Þ

[see Gomberg et al., 2000; Beeler and Lockner, 2003 for
more details]. Expressing this as a seismicity rate, recasting
the differences as differentials, and equating with probability
density using equation (A2), we have

PðtÞ ¼ PðtrÞ

1$ dtc
dtr

ðtÞ
: ðA4Þ

Equation (A4) can be used with any fault failure relation for
which the clock advance due to stress change can be
estimated. A simple rock fracture and stick-slip friction
failure stress was proposed by Dieterich [1992, 1994]:
t
se

¼ m* þ a ln
V

V*
$ b

d
dc

[see text below equation (3)].

Assuming constant fault normal stress, for a shear stress
change of size Dt imposed at t0, the change in recurrence
time is

tc ¼ 0 tr < t0

tc ¼
Dt
_t

$ ase

_t
ln 1$ exp _tt0

$

ase

% &

½1$ exp Dt
$

ase

% &

' exp $ _t tr

$

a

% &+ ,

t > t0 ðA5Þ

[Gomberg et al., 1998] and t = tr $ tc. Using this solution to
calculate the derivative dtc / dtr, and using that relation with
the log normal distribution of failure times we have
recurrence probability density due to static stress change:

P tð Þ ¼ 1

st
ffiffiffiffiffiffi

2p
p exp $ ln tð Þ $!ltr

" #2
$

2s2
% &

t < t0

P tð Þ ¼

1

sðt þ tcÞ
ffiffiffiffiffiffi

2p
p exp $ ln t þ tcð Þ $!ltr

" #2
$

2s2
% &

1þ exp $Dt=aseð Þ $ 1½ ' exp $ _t t $ t0ð Þ=ase½ ' t ( t0

ðA6Þ

The formulation developed in this Appendix is also discussed
in the separate paper by Gomberg et al. [2005], and is
equivalent to the numerical scheme of Hardebeck [2004].
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